Abstract
The potential of microalgal photobioreactors in removing total ammonia nitrogen (TAN), chemical oxygen demand (COD), caffeine (CAF), and N,N-diethyl-m-toluamide (DEET) from synthetic wastewater was studied. Chlorella vulgaris achieved maximum removal of 62.2% TAN, 52.8% COD, 62.7% CAF, and 51.8% DEET. By mixing C. vulgaris with activated sludge, the photobioreactor showed better performance, removing 82.3% TAN, 67.7% COD, 85.7% CAF, and 73.3% DEET. Proteobacteria, Bacteroidetes, and Chloroflexi were identified as the dominant phyla in the activated sludge. The processes were then optimized by the artificial neural network (ANN). High R2 values (>0.99) and low mean squared errors demonstrated that ANN could optimize the reactors’ performance. The toxicity testing showed that high concentrations of contaminants (>10 mg/L) and long contact time (>48 h) reduced the chlorophyll and protein contents in microalgae. Overall, a green technology for wastewater treatment using microalgae and bacteria consortium has demonstrated its high potentials in sustainable management of water resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.