Abstract

This paper reports on contactless microparticle manipulation including single-particle controlled trapping, transportation, and patterning via single beam acoustic radiation forces. As the core component of single beam acoustic tweezers, a needle type ultrasonic transducer was designed and fabricated with center frequency higher than 300 MHz and -6 dB fractional bandwidth as large as 64%. The transducer was built for an f-number close to 1.0, and the desired focal depth was achieved by press-focusing technology. Its lateral resolution was measured to be better than 6.7 μm by scanning a 4 μm tungsten wire target. Tightly focused acoustic beam produced by the transducer was shown to be capable of manipulating individual microspheres as small as 3 μm. "USC" patterning with 15 μm microspheres was demonstrated without affecting nearby microspheres. These promising results may expand the applications in biomedical and biophysical research of single beam acoustic tweezers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.