Abstract
BackgroundThe proteins contactin (CNTN) 1–6 are synaptic proteins for which there is evidence that they are dysregulated in neurodegenerative dementias. Less is known about CNTN changes and differences in cerebrospinal fluid (CSF) of dementias, which can provide important information about alterations of the CNTN network and be of value for differential diagnosis.MethodsWe developed a mass spectrometry-based multiple reaction monitoring (MRM) method to simultaneously determine all six CNTNs in CSF samples using stable isotope-labeled standard peptides. The analytical performance of the method was evaluated for peptide stability, dilution linearity and precision. CNTNs were measured in 82 CSF samples from patients with Alzheimer’s disease (AD, n = 19), behavioural variant frontotemporal dementia (bvFTD, n = 18), Parkinson’s disease dementia/dementia with Lewy bodies (PDD/DLB, n = 18) and non-neurodegenerative controls (n = 27) and compared with core AD biomarkers.ResultsThe MRM analysis revealed down-regulation of CNTN2 (fold change (FC) = 0.77), CNTN4 (FC = 0.75) and CNTN5 (FC = 0.67) in bvFTD and CNTN3 (FC = 0.72), CNTN4 (FC = 0.75) and CNTN5 (FC = 0.73) in PDD/DLB compared to AD. CNTN levels strongly correlated with each other in controls (r = 0.73), bvFTD (r = 0.86) and PDD/DLB (r = 0.70), but the correlation was significantly lower in AD (r = 0.41). CNTNs in AD did not show correlation even with core AD biomarkers. Combined use of CNTN1-6 levels increased diagnostic performance of AD core biomarkers.ConclusionsOur data show CNTNs differentially altered in dementias and indicate CNTN homeostasis being selectively dysregulated in AD. The combined use of CNTNs with AD core biomarkers might help to improve differential diagnosis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have