Abstract

The paper describes the deformation behavior of spherical, dry and non-porous particles during a single particle compression test in normal direction. Therefore a compression tester was built. Industrial used soda lime glass particles with two macroscopic fine disperse sizes (d1,50,3=284.30μmand d2,50,3=513.20μm) were applied as model material to investigate the micromechanical contact behavior. In order to influence the elastic-plastic contact properties of particles, the surfaces were altered with chemical modification by means of silanization.The determination of various micromechanical contact properties (e.g. adhesion force, modulus of elasticity and contact stiffness) was carried out model-based with the contact model ‘stiff particles with soft contacts’ by means of a back-calculation.It could be shown that the model-based determination of material properties was a good alternative compared to the comprehensive tensile tests and pull-off force measurements.In addition to the gained normal force-displacement data in normal direction, the friction limits for tangential loading and rolling with the load-dependent adhesion force were model-based determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call