Abstract

BackgroundTo support bone regeneration, 3D-printed templates function as temporary guides. The preferred materials are synthetic polymers, due to their ease of processing and biological inertness. Poly(lactide-co-trimethylene carbonate) (PLATMC) has good biological compatibility and currently used in soft tissue regeneration. The aim of this study was to evaluate the osteoconductivity of 3D-printed PLATMC templates for bone tissue engineering, in comparison with the widely used 3D-printed polycaprolactone (PCL) templates.MethodsThe printability and physical properties of 3D-printed templates were assessed, including wettability, tensile properties and the degradation profile. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were used to evaluate osteoconductivity and extracellular matrix secretion in vitro. In addition, 3D-printed templates were implanted in subcutaneous and calvarial bone defect models in rabbits.ResultsCompared to PCL, PLATMC exhibited greater wettability, strength, degradation, and promoted osteogenic differentiation of hBMSCs, with superior osteoconductivity. However, the higher ALP activity disclosed by PCL group at 7 and 21 days did not dictate better osteoconductivity. This was confirmed in vivo in the calvarial defect model, where PCL disclosed distant osteogenesis, while PLATMC disclosed greater areas of new bone and obvious contact osteogenesis on surface.ConclusionsThis study shows for the first time the contact osteogenesis formed on a degradable synthetic co-polymer. 3D-printed PLATMC templates disclosed unique contact osteogenesis and significant higher amount of new bone regeneration, thus could be used to advantage in bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.