Abstract

When a chromophore embedded in a photoreceptive protein undergoes a reaction upon photoexcitation, the photoreaction triggers structural changes in the protein moiety that are necessary for the function of the protein. It is thus essential to elucidate the coupling between the chromophore and protein moiety to understand the functional mechanism for photoreceptive proteins, but the mechanism by which this coupling occurs remains poorly understood. Here, we show that nonbonded atomic contacts play an essential role in driving functionally important structural changes following photoisomerization of the chromophore in Gloeobacter rhodopsin (GR). Time-resolved ultraviolet resonance Raman spectroscopy revealed that the substitution of Trp222, which contacts with methyl groups of the retinal chromophore, with a Phe residue reduced the extent of structural change. The proton-pumping activity of the GR mutant was as small as 9% of that of the wild type. Time-resolved visible absorption and resonance Raman spectra showed that the photocycle of the mutant proceeded to the L intermediate following the all-trans to 13-cis photoisomerization step but did not result in the deprotonation of the chromophore. The present results demonstrate that the atomic contacts between the chromophore and the Trp222 side chain induce the structural changes necessary for proton transfer. The requirement for dense atomic packing in a protein structure for the efficient propagation of structural changes through a coupling mechanism is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call