Abstract

HypothesisCharacterization of contact angle hysteresis on soft surfaces is sensitive to the measurement protocol and might present adventitious time-dependencies. Contact line dynamics on solid surfaces is altered by the surface chemistry, surface roughness and/or surface elasticity. We observed a “slow” spontaneous relaxation of static water sessile drops placed on elastic surfaces. This unexpected drop motion reveals unresolved equilibrium configurations that may affect the observed values of contact angle hysteresis. Drop relaxation on deformable surfaces is partially governed by a viscoelastic dissipation located at the contact line. ExperimentsIn this work, we studied the natural relaxation of water drops formed on several smooth PDMS surfaces with different elastic moduli. We monitored in time the contact angle and contact radius of each drop. For varying the initial contact angle, we used the growing-shrinking drop method. FindingsWe postulate that the so-called “braking effect”, produced by the surface deformability, affects the contact line velocity and in consequence, the contact angle measurements. We conclude that the wetting properties of elastic surfaces should be properly examined with reliable values of contact angle measured after drop relaxation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.