Abstract

Q-Gorenstein toric contact manifolds provide an interesting class of examples of contact manifolds with torsion first Chern class. They are completely determined by certain rational convex polytopes, called toric diagrams, and arise both as links of toric isolated singularities and as prequantizations of monotone toric symplectic orbifolds. In this paper we show how the cylindrical contact homology invariants of a Q-Gorenstein toric contact manifold are related to‱the Ehrhart (quasi-)polynomial of its toric diagram;‱the Chen-Ruan cohomology of any crepant toric orbifold resolution of its corresponding toric isolated singularity;‱the Chen-Ruan cohomology of any monotone toric symplectic orbifold base that gives rise to it through prequantization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.