Abstract
AbstractCharge transfer, a decisive feature for surface charge density in triboelectric nanogenerators (TENGs), differs in quantity and species at different contact interfaces. Regarded as the main electrification mechanism, electron transfer has been extensively investigated in constructing high‐performance tribo‐materials and TENGs, in which material transfer has been always neglected. Here, it is demonstrated that material transfer is a crucial electrification mechanism for adhesive polymers in contact electrification, and plays a dominant role in boosting charge transfer and TENG performance. Specifically, as a new strategy for utilizing the adhesion capability, this study introduces the stabilized poly(thioctic acid) adhesives as tribo‐materials to maximize contact electrification. With material transfer at the adhesive interface, abundant mechanoions are generated through covalent bond cleavage and higher charge density is obtained from the triboelectric pairs with larger interfacial adhesion force. Under a gentle triggering condition (5 N, 1 Hz), the TENG can achieve a high charge density of 14.65 nC∙cm−2, with a maximum output power density of 10 W∙m−2. Furthermore, the TENG exhibits unique frequency‐insensitive, pressure‐ and temperature‐enhanced output characteristics. This study provides new insight into constructing high‐performance TENGs using adhesives and highlights the indispensable role of material transfer in polymer contact electrification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.