Abstract
Air bubbles are of interest in various applications. The study of their formation, interaction with underlying surfaces, and their movement is of importance. Bioinspired conical surfaces have been known to exhibit Laplace pressure gradient which facilitates the movement of liquid droplets. These conical surfaces, with various geometries and wettabilities, can be used to regulate gas bubble movement. In this study, contact angles of air bubbles and their movement on various conical surfaces were investigated. The effect of parameters including cone orientation, air bubble volume, tip angle, and wettability on air bubble movement were studied. A smaller tip angle cone with high wettability was found to be most efficient for an air bubble movement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.