Abstract

We study a consumption-portfolio optimization problem in a hidden Markov-modulated asset price model with multiple risky assets, where model uncertainty is present. Under this modeling framework, the appreciation rates of risky shares are modulated by a continuous-time, finite-state hidden Markov chain whose states represent different modes of the model. We consider the situation where an economic agent only has access to information about the price processes of risky shares and aims to maximize the expected, discounted utility from intermediate consumption and terminal wealth within a finite horizon. The standard innovations approach in filtering theory is then used to transform the partially observed consumption-portfolio optimization problem to the one with complete observations. Robust filters of the chain and estimates of some other parameters are presented. Using the stochastic maximum principle, we derive a closed-form solution of an optimal consumption-portfolio strategy in the case of a power utility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.