Abstract
Sensory-specific satiety, which is defined as a relative decrease in pleasantness, is increased by greater oro-sensory stimulation. Both sensory-specific satiety and pleasantness affect taste activation in the orbitofrontal cortex. In contrast, metabolic satiety, which results from energy intake, is expected to modulate taste activation in reward areas. The aim of this study was to determine the effects of the amount of oro-sensory stimulation and energy content on consumption-induced changes in taste activation. Ten men participated in a 2×2 randomized crossover study. Subjects were scanned twice using functional magnetic resonance imaging: after fasting for at least 2h and after treatment, on four occasions. Treatment consisted of the ingestion of 450mL of orangeade (sweetened with 10% sucrose or non-caloric sweeteners) at 150mL/min, with either small (5mL) or large (20mL) sips. During scanning, subjects alternately tasted orangeade, milk and tomato juice and rated its pleasantness. Before and after the scans, subjects rated pleasantness, prospective consumption, desire to eat and sweetness for all tastants. Main findings were that, before treatment, the amygdala was activated more by non-caloric than by caloric orangeade. Caloric orangeade activated part of the striatum before, but not after treatment. We observed no main effects of sip size on taste activation and no interaction between sip size and caloric content. In conclusion, the brain responds differentially to caloric and non-caloric versions of a sweet drink and consumption of calories can modulate taste activation in the striatum. Further research is needed to confirm that the observed differences are due to caloric content and not to (subliminal) differences in the sensory profile. In addition, implications for the effectiveness of non-caloric sweeteners in decreasing energy intake need to be established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.