Abstract
In the recent years, the scale of online transaction has increased considerably. Subsequently, this has also increased the number of fraud cases, causing billions of dollars losses each year worldwide. Therefore, it has become mandatory to implement mechanisms that are able to assist in fraud detection. In this work, the use of Ensemble Genetic Algorithm is proposed to identify frauds in electronic transactions, more specifically in online credit card operations. A case study, using the dataset containing transactions made by credit cards in September 2013 by European cardholders, is used. This dataset presents transactions that occurred in two days, where we have 492 frauds out of 284,807 transactions. The presented algorithm achieves good performance in fraud detection as compared to the other machine learning algorithms. The results show that the proposed algorithm achieved good classification effectiveness in all tested instances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Innovative Technology and Exploring Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.