Abstract

Hydrogen energy plays an important role in achieving green and low-carbon transformation and development. It is a feasible method to produce clean hydrogen by solar irradiation. In this paper, a new type of InN/BTe van der Waals heterojunction is designed based on density functional theory. The calculated results show that the lattice mismatch of the heterojunction is less than 2% and has good stability, which is beneficial to the experimental synthesis. Under light irradiation, the transfer path of electrons and holes generated by light excitation is Z-scheme mechanism, which accumulates in BTe conduction band and InN valence band with stronger redox activity, respectively, and improves the efficiency of photocatalytic hydrolysis. The InN/BTe heterojunction under the standard hydrogen electrode can achieve complete decomposition of water and spontaneous hydrogen evolution reaction. The high solar-to-hydrogen conversion efficiency (up to 17.92%) and electron mobility (1820.54 cm2/Vs) indicate that the InN/BTe heterojunction is a promising photocatalytic material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call