Abstract

The development of an efficient noble-metal-free and pH-universal electrocatalyst for the hydrogen evolution reaction (HER) would be highly significant for hydrogen (H2) production via electrocatalytic water splitting. However, developing such a catalyst remains a formidable task. Herein, a strategy is proposed for the in situ fabrication of a novel urchin-like NiCoP microsphere catalyst (0.5CDs-NiCoP/NF) on nickel foam (NF) using carbon dots (CDs) as a directing agent. The strong bonding between the CDs and metals provides additional active sites, giving 0.5CDs-NiCoP/NF excellent electrocatalytic hydrogen evolution performance in environments ranging from acidic to basic. Moreover, the unique structure of 0.5CDs-NiCoP/NF endows this catalyst with low Tafel slopes of 73, 146 and 74 mV dec−1 for HER in acidic, neutral and alkaline conditions, respectively. This performance exceeds that of numerous other reported non-precious HER catalysts. In summary, this work offers a novel and efficient strategy for the design and synthesis of low-cost, efficient, and robust transition metal phosphides (TMPs) electrocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call