Abstract

Human mesenchymal stem cells (MSCs) differentiate into multiple cell-lineages and may serve as an alternative source of seed cells for tissue engineering. We investigated whether MSCs could be induced to differentiate into endothelial cells (ECs) and function as seed cells for the in vitro construction of tissue-engineered heart valves (TEHVs). Aortic or pulmonary valve homografts were decellularized with 0.1% sodium dodecylsulphate and used as scaffolds for TEHVs. The MSCs were isolated from human bone marrow by Percoll gradient centrifugation (1.073 g/ml), differentiated into ECs with vascular endothelial growth factor (10 ng/ml), and seeded onto a decellularized scaffold (high-density seeding, >10(5) cells/cm2) and grown in static culture for 14 days. Over 90% of the differentiated cells from MSCs stained positively for von Willebrand factor and Tie-2-related antigen. Additionally, Weibel-Palade corpuscle was observed in the cytoplasm of these cells. Levels of reendothelialization in static culture on days 7, 14, and 20, were 73%, 85%, and 95%, respectively. These results show that MSCs from human bone marrow can differentiate, in vitro, into ECs that can then be used to construct TEHVs. Reendothelialization in static culture can be used to provide the basic material for pulsatile-flow cultivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call