Abstract

The development of low-cost and highly efficient bifunctional electrocatalysts for overall water splitting is a challenging but urgent goal. Herein, nickel cobaltite (NiCo2O4) with different morphologies was developed for electrocatalytic overall water splitting. Encouragingly, the NiCo2O4 nanoneedle arrays required competitive hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) overpotentials of 106 and 310 mV to achieve a density of 10 mA cm−2 (j10) in KOH media, respectively. Furthermore, the as-made nanoneedle electrocatalyst employed as both anode and cathode, which displayed a low voltage of 1.67 Vto attain j10, with satisfactory durability for 50 h. The nanoneedle morphology not only improves the electrochemical active surface area, but also helpful to boost the charge transfer ability of NiCo2O4 and control the adsorption of reaction intermediates in water splitting. These results demonstrate the feasibility of the NiCo2O4 nanostructure by altering the active sites using morphology to develop the electrocatalytic activity of the materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.