Abstract

ABSTRACTArtificial dielectric superlattices of SrTiO3/BaTiO3(STO/BTO) and CaTiO3/BaTiO3 (CTO/BTO) have been formed by a pulsed laser ablation technique with an in situ monitoring of RHEED (reflection high energy electron diffraction) oscillation. The crystal structures can be controlled with atomic order accuracy and a large stress of 400–500 MPa is introduced at the interface between the BTO and STO layers. Xhe superlattices show higher dielectric constant than that of (Sr0.5Ba0.5)TiO3 films against the change of temperature or applied frequency. A large dielectric constant of 900 was observed for the superlattices with a stacking periodicity of 2 unit cells / 2 unit cells. Xhe superlattices show drastically different electrical behavior from that of the solid solution (Sr,Ba)XiO3 films, both with changing temperature and applied frequency. Broad maxima of the dielectric constants occur around 40–50 °C and the values remain large even for the temperature above 200 °C. On the contrary, in the case of CTO/BTO superlattices, lattice constants and dielectric constant do not change so much compared with STO/BTO cases. Lattice mismatch in the STO/BTO and the CTO/BTO superlattices are 2.5% and 5.5%, respectively. In the case of CTO/BTO, misfit dislocations such as stacking faults may occur at the interface between CTO and BTO layers owing to large lattice mismatch. Therefore, lattice strain is introduced effectively below the lattice mismatch of about 3%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.