Abstract
We propose a new mesh refinement algorithm for computing quality guaranteed Delaunay triangulations in three dimensions. The refinement relies on new ideas for computing the goodness of the mesh, and a sampling strategy that employs numerically stable Steiner points. We show through experiments that the new algorithm results in sparse well-spaced point sets which in turn leads to tetrahedral meshes with fewer elements than the traditional refinement methods.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have