Abstract
The demand for travel is increasing as human living conditions rise. The paper presents a smart tourism system architecture that incorporates visitors' demands and scenario characteristics, and performs path planning using path search algorithms and selective tour path recommendation algorithms, in order to improve tourists' travelling experiences and save them time. The experimental data showed that the enhanced heuristic search algorithm visited 122 nodes, which is 62.9% and 52.3% less than the sparrow search algorithm and the improved genetic search strategy, respectively. The number of iterations required to reach convergence for the selective tour path recommendation algorithm, genetic algorithm, discrete particle swarm algorithm, and genetic particle swarm algorithm, respectively, was 39, 90, 85, and 63, indicating that the proposed selective tour path recommendation algorithm has the fastest computational speed. The accuracy, stability, user satisfaction, and overall rating of the smart tourism system that integrates tourists' needs and scenario characteristics are all higher than those of the three types of tourism systems, such as the iBeacon Smart Tourism System, indicating that this smart tourism system is the best to use, helping to enhance tourists' experiences and promote the robust development of the tourism industry.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have