Abstract

The design and preparation of heterogeneous structures of dielectric materials has been the mainstream direction for the construction of superior microwave absorption materials (MAMs). We report a facile and efficient procedure combination of hydrothermal process and subsequent heat treatment for successfully prepared bilayer core–shell structure self-assembled V2O3 microspheres (BCSV). The microstructure, defects, dielectric properties and microwave absorption (MA) properties of BCSV were systematically investigated, and the effect of bilayer core–shell structure on the MA properties was discussed. By varying the heat treatment temperature, it is feasible to regulate the thickness of V2O3 bilayer and its unique structure defects, hence enhancing the attenuation and multiple polarization loss of electromagnetic waves inside the microspheres. Self-assembled V2O3 microspheres with bilayer core–shell structure exhibit high-performance MA property. The reflection loss (RL) gets to − 67.12 dB at 11.69 GHz covering the whole X-band after heat treatment at 600 °C, and the broad effective absorption bandwidth is 5.49 GHz with a thickness of 2.20 mm. The conductivity loss, multiple polarization loss and dielectric loss are ascribed to the specific bilayer core–shell structure. Thus, our work provides a good perspective on how to create vanadium oxide-based MAMs with effective absorption and broad bandwidth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.