Abstract
Pharmaceutically active compounds are an emerging water contaminant that resists conventional wastewater treatments. Herein, the sonophotocatalytic degradation of Tetracycline (TC) antibiotics as a model contaminant was carried out over a rod-like g-C3N4/V2O5 (RCN-VO) nanocomposite. RCN-VO nanocomposite was synthesized via ultrasound-assisted thermal polycondensation method. The results showed that the RCN-VO nanocomposite could completely remove the TC in water within 60 min under simultaneous irradiation of visible light and ultrasound. Moreover, the sonophotocatalytic TC degradation (a synergy index of ∼1.5) was superior to the sum of individual sonocatalytic and photocatalytic degradation using RCN-VO nanocomposite. Besides, the enhanced sonophotocatalytic activity of RCN-VO can be attributed to the 1D/2D nanostructure and the S-scheme heterojunction formation between RCN and VO where the electrons migrated from RCN to VO across the RCN-VO interface. Under irradiation, the built-in electric field, band edge bending and Coulomb interaction can synergistically facilitate the unavailing electron-hole pair recombination. Thereby, the cumulative electron in RCN and holes in VO can actively take part in the redox reaction which generates free radicals and attack the TC molecules. This study provides insight into a novel S-Scheme heterojunction photocatalyst for the removal of various refractory contaminants via sonophotocatalytic degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.