Abstract
The mitochondrial genomes of rice cells were transferred to a fertile rice variety (N8) from a cytoplasmic male sterile variety (CMS) by asymmetric protoplast fusion based on metabolic complementation. Protoplasts derived from CMS were X-irradiated (125 krad) and electrofused with protoplasts which had been treated with iodoacetamide. Metabolic complementation, presumably between nuclear and cytoplasmic compartments, enabled fused protoplasts to form colonies at high efficiency. Restriction digest analysis of mitochondrial DNA (mtDNA) indicated that hybrid cells carried mtDNA derived from both parents. Of the plants regenerated from hybrid calli, 68% carried a diploid chromosome set (2n=24) and the rest of them carried 48 chromosomes. All of them expressed the aryl acylamidase I deficient phenotype encoded by the recessive allele of the fertile N8 parent. These results indicate that the novel somatic hybrid plants regenerated were cybrids, deriving their nucleus from the iodoacetamide treated parent and their mitochondria from both parents.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have