Abstract

A system of third-order recurrence relations for the coefficients of polynomial eigenfunctions (PEFs) of a differential equation is solved. A recurrence relation for three consecutive PEFs and a formula for differentiating PEFs are obtained. We consider differential equations one of which generalizes the Hermite and Laguerre differential equations and the other is a generalization of the Jacobi differential equation. For these equations, we construct functions bringing them to self-adjoint form and find conditions under which these functions become weight functions. Examples are given where the PEFs for nonweight functions do not have real zeros.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.