Abstract
Given an integer $d\ge 2$, a $d$-{\it normal number}, or simply a {\it normal number}, is a real number whose $d$-ary expansion is such that any preassigned sequence, of length $k\ge 1$, of base $d$ digits from this expansion, occurs at the expected frequency, namely $1/d^k$. We construct large families of normal numbers using classified prime divisors of integers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.