Abstract

Nine new coordination compounds, namely, [Co(HDSPTP)2(H2O)4]·4H2O (H2DSPTP=4’-(2,4-disulfophenyl)-3,2’:6’3”-terpyridine, 1 and 2), {[Ni(DSPTP)(H2O)4]·3H2O}n (3), {[Cu(HDSPTP)2(H2O)3]·8H2O}n (4), {[Cu(HDSPTP)2(H2O)3]·6H2O}n (5), {[Cu(DSPTP)(H2O)2]·H2O}n (6), {[Zn(DSPTP)(H2O)2]·2H2O}n (7), {[Cd(DSPTP)(H2O)2]·2H2O}n (8), and [Ag2(DSPTP)(H2O)]n (9), were constructed based on a new ligand containing both terpyridyl and sulfo groups. The reactions of H2DSPTP with Co(NO3)2.6H2O resulted in two mononuclear complexes (compounds 1 and 2). They are polymorphisms that display different hydrogen bonding networks. They are selectively synthesized by altering the added alkalis. The reaction of H2DSPTP with Ni(NO3)2·6H2O resulted in a 1D “S-shaped” coordination chain (compound 3). The reactions of Cu(II) with H2DSPTP at different pH value resulted in the following three compounds: two kinds of 1D chains obtained at pH 3.0 and 4.0 for compounds 4 and 5, respectively, and a 3D framework based on binuclear ring units with 4-connected sra topology (Compound 6). The reactions of H2DSPTP with ds-block ions resulted in the following three compounds: a Zn(II) (compound 7) and a Cd(II) (compound 8) 3D frameworks with structures similar to that in compound 6, and a 3D framework based on tetranuclear Ag(I) SBUs with binodal (4,8)-connected flu type 3D framework topology. The structural diversity is mainly attributed to the rich coordination modes (from monodentate to µ7-mode) and conformations (cis–cis and cis–trans) of HDSPTP−/DSPTP2− ligands and the metal center and can be controllable synthesized by altering the alkalis, and pH value. Thermal stability of all compounds was performed, and the thermal behaviors of compounds 6 and 8 were further explored by PXRD. Compound 6 exhibits low thermal stability and undergo a crystalline–crystalline-amorphous phase transition as temperature increases from 25°C to 200°C, and show amorphous–crystalline phase transition when rehydrated. However, compound 8 exhibits high thermal stability above 500°C. Its crystalline phase can retain above 300°C and undergo a crystalline–crystalline phase transition as temperature increased to 400°C, and transit back to compound 8 when rehydrated. Moreover, luminescence properties of compounds 7–9 were also investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call