Abstract
Polyvinyl alcohol (PVA) film, a promising alternative to non-biodegradable plastic packaging films for food and medical packaging, is limited by poor water resistance. In this work, a simple solvent evaporation self-assembly was used to construct a nanophase separation structure to establish dense interfacial hydrogen bonding, covalent bonding and iron metal ion coordination interactions between lignin-containing cellulose nanofibers (LCNFs) and PVA matrix to improve the interfacial force and solve the problem of poor compatibility of LCNFs in PVA. The iron ion (Fe3+) coordination tended to combine with the more active lignin phenolic hydroxyl group to construct the nanophase separation structure. Covalent crosslinking of glutaraldehyde (GA) improved the interfacial compatibility of PVA/LCNF films, enhanced the interfacial bonding and formed a homogeneous structure. The multi-nanophase structures improved the strength and elastic modulus of the PVA/LCNF film and provided the films with extremely low water absorption, water vapor transmission rate and excellent UV-shielding. Compared with pure PVA film, PVA-10L-5Fe-3GA film had about 106.9 % higher tensile strength, 93.9 % lower water absorption and 93.4 % lower mass loss, 69.8 % lower water vapor transmission coefficient, and was able to shield UV at 200–400 nm, which is highly expected to be used in packaging films.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have