Abstract

Organic micropollutants have been extensively detected in environmental waters, posing severe hazards to organisms and humans. Effective detection of micropollutants in environmental water and food samples is of significant importance. Herein, a novel magnetic porous organic framework (labeled as M-Qu-POF) was synthesized using natural quercetin as building units via a facile azo-coupling reaction for the first time. Featuring with good magnetism, intrinsic porosity, high surface area and hydrophilic-lipophilic (amphiphilic) structure, the M-Qu-POF displayed high adsorption capacity for phenylurea herbicides (PUHs) pollutants. The adsorption mechanism was investigated by theory calculation, confirming that the hydrogen bonds interaction, π-π interactions and electrostatic interactions play an important role in the adsorption. With the M-Qu-POF as adsorbent, a magnetic solid phase extraction-high performance liquid chromatography method was first established for simultaneous enrichment and detection of six PUHs in environmental water, tea drink and cucumber samples. Under the optimized experimental conditions, good linear range, low detection limits and high enrichment factors were obtained. The method was successfully applied for determination of PUHs in environmental water, tea drink and cucumber samples with satisfactory recoveries (80.0–118%). The result demonstrates that the M-Qu-POF material has a good application prospect in the detection of other organic micropollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call