Abstract

Although the Ostwald ripening approach is often utilized to manufacture single hollow metal oxide, constructing hollow binary oxide heterostructures as potent photoelectrochemical (PEC) catalysts is still obscure and challenging. Herein, we reveal a general strategy for fabricating hollow binary oxides heterostructures (Co3O4-δ-MnO2 and Co3O4–SnO2) utilizing Ostwald ripening. Hollow Co3O4-δ-MnO2 nano-network with the structure evolution process was systematically explored through experimental and theoretical tools, identifying the origin of hollow binary oxides due to the interfaces acting as landing sites for their growth. In addition, the structural evolution, from hollow Co3O4-δ-MnO2 to Co3O4-α-MnO2, can be observed when the time of secondary hydrothermal reaches 96 ​h due to the topotactic layer-to-tunnel transition process. Notably, optimized Co3O4-δ-MnO2-48 exhibits a superior PEC degradation efficiency of 96.42% and excellent durability (20,000 ​min) under harsh acid conditions, attributed to the massive hollow structures' vast surface area for high intently active species. Furthermore, density functional theory simulations elucidated the Co3O4-δ-MnO2’ electron-deficient surface and high d-band center (Co3O4-δ-MnO2, -1.06; Co3O4-α-MnO2, -1.49), strengthening the interaction between the catalyst's surface and active species and prolonging the lifetime of active species of •O2− and 1O2. This work not only demonstrates superior PEC degradation efficiency of hollow Co3O4-δ-MnO2 for practical use but also lays the cornerstone for constructing hollow binary oxides heterostructures through Ostwald ripening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call