Abstract

Over the last 40 years, the design of [Formula: see text]-dimensional hyperchaotic systems with a maximum number ([Formula: see text]) of positive Lyapunov exponents has been an open problem for research. Nowadays it is not difficult to design [Formula: see text]-dimensional hyperchaotic systems with less than ([Formula: see text]) positive Lyapunov exponents, but it is still extremely difficult to design an [Formula: see text]-dimensional hyperchaotic system with the maximum number ([Formula: see text]) of positive Lyapunov exponents. This paper aims to resolve this challenging problem by developing a chaotification approach using average eigenvalue criteria. The approach consists of four steps: (i) a globally bounded controlled system is designed based on an asymptotically stable nominal system with a uniformly bounded controller; (ii) a closed-loop pole assignment technique is utilized to ensure that the numbers of eigenvalues with positive real parts of the controlled system be equal to ([Formula: see text]) and ([Formula: see text]), respectively, at two saddle-focus equilibrium points; (iii) the number of average eigenvalues with positive real parts is ensured to be equal to ([Formula: see text]) for the controlled system over a given control period; (iv) the smallest value of the positive real parts of the average eigenvalues is ensured to be greater than a given threshold value. Finally, the paper is closed with some typical examples which illustrate the feasibility and performance of the proposed design methodology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call