Abstract
The anisotropic magnetoresistance film is an important core material for developing the magnetic sensors. Here, Ta(5)/MgO(3)/NiFe(10)/MgO(3)/Ta(3) multilayers (in nanometer) were prepared by magnetron sputtering and further applied to construct a sensor element by combining with the Wheatstone bridge. The 1/f noise of the sensor element was greatly reduced by three orders of magnitude after annealing at 400 °C for 7200 s, which was mainly due to the significant microstructural changes during the annealing. However, when the sensor element was applied to detect the magnetic signal of a magnetic code disk with 512 N–S magnetic poles, the output voltage signal of the sensor displayed a large fluctuation of ± 0.05 V. In order to reduce the voltage fluctuation, a magnetic sensor chip by using a parallelly arranged multi-path Wheatstone bridges and auto-gain compensation structure was designed, and magnetic sensor elements and the high-performance computing drive module were prepared. The output voltage fluctuation of the magnetic sensor was reduced by about 90% and approached to ± 0.005 V. These findings provide an important basis for the practical application of NiFe-based magnetic sensing film materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have