Abstract

A new approach for the construction of functionalized metallosupramolecular tetragonal prisms via multicomponent, coordination-driven, template-free self-assembly is described. The combination of tetra-(4-pyridylphenyl)ethylene, a 90° Pt(II) acceptor, and ditopic bipyridine or carboxylate ligands functionalized with hydroxyl or amine groups, hydrophobic alkyl chains, or electrochemically active ferrocene, yields a suite of seven self-assembled tetragonal prisms under mild conditions. These three-dimensional metallosupramolecules were characterized by multinuclear NMR ((31)P and (1)H) and mass spectrometry. Their shapes and sizes were established using Merck Molecular Force Field (MMFF) simulations. In addition, their approximate sizes were further supported by pulsed-field-gradient spin-echo (PGSE) NMR experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.