Abstract
In this paper, we study a general nonlinear Schrödinger equation with a time-dependent harmonic potential. Despite the lack of translational invariance, we find a symmetry transformation that, up from any solution, produces infinitely many others that are centered on classical trajectories. The results presented here imply that, not only the center of mass of the wave packet satisfies the Ehrenfest theorem and is decoupled from the dynamics of the wave packet, but also the shape of the solution is independent of the behavior of the center of the wave. Our findings have implications on the dynamics of Bose-Einstein condensates in magnetic traps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.