Abstract
D.C. motors are considered the basic components for the construction and development of various nanotechnology research equipment due to their constant speed and high efficiency. Spin coater, dip-coater, and spray pyrolysis were a few among them which utilize the above-mentioned component for the production of thin-film coatings on the desired substrates. Conventional spin coater, dip-coater, and spray pyrolysis are expensive to install in research laboratories. In this letter, we report the economical construction of an Arduino-based dip-coater that uses a linear actuator consisting of a D.C. motor for the production of hydrophobic coatings. The dip and drawl rate of the as-constructed machine was estimated to be 3mm/sec and can be varied according to the requirement without any interferences of vibration. Further, the dip-coater was tested with TiO2 gel for the production of hydrophobic coatings on cotton fabrics. The coated fabrics were characterized using an X-ray diffractometer (XRD), which confirmed the presence of TiO2, and reflectance analysis using ultraviolet-visible and near-infrared spectroscopy (UV-VIS-NIR) on the coated fabric revealed an increase in the visible and IR range and a decrease on the ultraviolet spectral region. The goniometer investigation with a water droplet on the treated fabric revealed 137O contact angle and the coating is proved as a super hydrophobic coating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.