Abstract

In the manufacturing industry, unstructured documents such as design guidelines, regulatory documents, and failure cases are essential for product development. However, due to the large volume and frequent revisions of these documents, designers often find it difficult to keep up to date with the latest content. This study presents a method for analyzing the characteristics of unstructured design guidelines and automatically constructing a knowledgebase of design requirements from them. A knowledgebase is structured data that a computer can understand, and that can be used to assist designers in the design process. The knowledgebase is constructed using the sections of the document, including design variables and design requirements. The construction process involves pre-processing the documents, extracting information using natural language processing models, and generating a knowledgebase using predefined rules. A requirements knowledgebase was experimentally constructed from a standard document on the general requirements for the design of pressure vessels (American Society of Mechanical Engineers Section VIII Division 1) using the proposed method. In the experiment, the accuracy of information extraction was 86.3 %, and the generation process took 3 min and 50 s. Thus, the proposed method eliminates the need for specialized training of deep learning models and can be applied to various design guideline documents with simple modifications to the design vocabulary and rules. The knowledgebase has applications in design validation, and is expected to enhance the efficiency of the product development process and contribute to reducing the overall development timeline.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.