Abstract

Eight coordination polymers (CPs), {[Ag(L1)]ClO4}n (1), {[Ag(L2)1.5]ClO4·C2H3N}n (2a), {[Ag(L2)]ClO4}n (2b), [Zn(L1)Cl2]n (3), {[Zn(L2)Cl2]·CHCl3}n (4), {[Cu(L1)2Cl]Cl·H2O}n (5), [Cu2(L2)(μ-Cl)2]n (6), and [Cu4(L2)(μ-Cl)4]n (7) were synthesized via self-assembly of corresponding metal ions and biimidazole based ditopic ligands, 1,1′-bis(pyridin-3-ylmethyl)-2,2′-biimidazole L1 and 1,1′-bis(pyridin-4-ylmethyl)-2,2′-biimidazole L2. These ligands possess conformational flexibility and two pairs of coordination sites: pyridine nitrogen (NPy) atoms and imidazole nitrogen (NIm) atoms. Depending on the metal center in CPs, the biimidazole compounds act as tetra- (1, 7), tri- (2a), or bidentate (2a, 2b, 3–6) ligands binding to the metal either via NPy or NIm, or both. All these CPs were structurally fully characterized with single crystal X-ray structure, mass spectrometry, and NMR spectroscopy. The solid state photophysical properties and thermal stabilities of the CPs were also briefly studied in the solid state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call