Abstract
We propose a generalized su(2) algebra that perfectly describes the discrete energy part of the Morse potential. Then, we examine particular examples and the approach can be applied to any Morse oscillator and to practically any physical system whose spectrum is finite. Further, we construct the Klauder coherent state for Morse potential satisfying the resolution of identity with a positive measure, obtained through the solution of truncated Stieltjes moment problem. The time evolution of the uncertainty relation of the constructed coherent states is analyzed. The uncertainty relation is more localized for small values of radius of convergence.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have