Abstract

Here, the molecule-modified Cu-based array is first constructed as the self-supporting tandem catalyst for electrocatalytic CO2 reduction reaction (CO2RR) to C2 products. The modification of cuprous oxide nanowire array on copper mesh (Cu2O@CM) with cobalt(II) tetraphenylporphyrin (CoTPP) molecules is achieved via a simple liquid phase method. The systematical characterizations confirm that the formation of axial coordinated Co-O-Cu bond between Cu2O and CoTPP can significantly promote the dispersion of CoTPP molecules on Cu2O and the electrical properties of CoTPP-Cu2O@CM heterojunction array. Consequently, as compared to Cu2O@CM array, the optimized CoTPP-Cu2O@CM sample as electrocatalyst can realize the 2.08-fold C2 Faraday efficiency (73.2%vs 35.2%) and the 2.54-fold current density (‒52.9vs ‒20.8mAcm-2) at ‒1.1V versus RHE in an H-cell. The comprehensive performance is superior to most of the reported Cu-based materials in the H-cell. Further study reveals that the CoTPP adsorption on Cu2O can restrain the hydrogen evolution reaction, improve the coverage of *CO intermediate, and maintain the existence of Cu(I) at low potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.