Abstract
SAP2 is closely associated with the pathogenicity and drug resistance of Candida albicans (C. albicans). Our study aimed to construct C. albicans with SAP2 overexpression (pRB895-SAP2-SC5314) to explore the influence of SAP2 on the adhesion of C. albicans and predict the interaction between magnolol and Sap2 by molecular docking. The recombinant plasmid pRB895-SAP2 with high SAP2 expression was prepared using a plasmid extraction kit and transformed into C. albicans strain SC5314 using an improved lithium acetate conversion method to construct PRB895-SAP2-SC5314. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to detect the expression of adhesion-related genes in the different strains. Molecular docking and visual analysis of magnolol and Sap2 were performed using the CB-DOCK2 platform. Compared with the control SC5341 and SC5341 transfected with pRB895, SAP2 expression was significantly higher in the pRB895-SAP2-SC5314 strain (p < 0.05). Based on the sequencing and mapping results, the pRB895-SAP2-SC5314 strain was successfully prepared. SAP2 overexpression significantly downregulated ALS1 expression (p < 0.05), whereas ALS3, TEC1, HOG1, PHR1, and TUP1 expression was downregulated in C. albicans (p < 0.05). The optimal docking result for magnolol and Sap2 protein was -8.1 kcal/mol of vina score, which was considered good docking. SAP2 overexpression may strengthen the adhesion and pathogenicity of C. albicans, and magnolol may act as an Sap2 inhibitor that affects the adhesion of C. albicans.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have