Abstract
Aromatic hydrocarbons (AHCs) are one of the major environmental pollutants introduced from both natural and anthropogenic sources. Many AHCs are well known for their toxic, carcinogenic, and mutagenic impact on human health and ecological systems. Biodegradation is an eco-friendly and cost-effective option as microorganisms (e.g., bacteria, fungi, and algae) can efficiently breakdown or transform such pollutants into less harmful and simple metabolites (e.g., carbon dioxide (aerobic), methane (anaerobic), water, and inorganic salts). This paper is organized to offer a state-of-the-art review on the biodegradation of AHCs (monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs)) and associated mechanisms. The recent progress in biological treatment using suspended and attached growth bioreactors for the biodegradation of AHCs is also discussed. In addition, various substrate growth and inhibition models are introduced along with the key factors governing their biodegradation kinetics. The growth and inhibition models have helped gain a better understanding of substrate inhibition in biodegradation. Techno-economic analysis (TEA) and life cycle assessment (LCA) aspects are also described to assess the technical, economical, and environmental impacts of the biological treatment system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have