Abstract

Pseudo-splines constitute a new class of refinable functions with B-splines, interpolatory refinable functions and refinable functions with orthonormal shifts as special examples. Pseudo-splines were first introduced by Daubechies, Han, Ron and Shen in [Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14(1) (2003), 1–46] and Selenick in [Smooth wavelet tight frames with zero moments, Appl. Comput. Harmon. Anal. 10(2) (2001) 163–181], and their properties were extensively studied by Dong and Shen in [Pseudo-splines, wavelets and framelets, 2004, preprint]. It was further shown by Dong and Shen in [Linear independence of pseudo-splines, Proc. Amer. Math. Soc., to appear] that the shifts of an arbitrarily given pseudo-spline are linearly independent. This implies the existence of biorthogonal dual refinable functions (of pseudo-splines) with an arbitrarily prescribed regularity. However, except for B-splines, there is no explicit construction of biorthogonal dual refinable functions with any given regularity. This paper focuses on an implementable scheme to derive a dual refinable function with a prescribed regularity. This automatically gives a construction of smooth biorthogonal Riesz wavelets with one of them being a pseudo-spline. As an example, an explicit formula of biorthogonal dual refinable functions of the interpolatory refinable function is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.