Abstract

Bismuth-based materials have attracted interest in potassium-ion batteries (PIBs). However, the large volume expansion prevents further use of bismuth-based materials for potassium storage. This work employs a two-step synthesis method to innovatively synthesize of Bi/Bi2O3 nanoparticles assembled on N-doped porous carbon sheets (Bi/Bi2O3@CN). The layered structures with uniformly shaped and N-doped porous carbon skeleton buffer the expansion of Bi and the Bi/Bi2O3 particles increase the capacity of potassium storage. In brief, the Bi/Bi2O3@CN served as anode in half-cell of PIBs have a good rate capacity of more than 234.7 mAh/g at 20 A/g. The specific capacity retention was 73 % compared with 322.16 mAh/g at 1 A/g, demonstrating good holding capacity for diverse current densities. The cycle also displays 163 mAh/g after 1500 cycles at 2 A/g in the KPF6 metal salt solution, showing its potential as one of the anode materials in PIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.