Abstract

BackgroundThe incidence of clear cell renal cell carcinoma (ccRCC) is increasing annually. While the cure rate and prognosis of early ccRCC are promising, the 5-year survival rate of patients with metastatic ccRCC is below 12%. Autophagy disfunction is closely related to infection, cancer, neurodegeneration and aging. Nevertheless, there has been limited exploration of the association between autophagy and ccRCC through bioinformatics analysis. MethodsA novel risk model of autophagy-related genes (ARGs) was constructed to predict the prognosis of patients with ccRCC and guide the individualized treatment to some extent. Relevant data samples were obtained from the TCGA database, and ccRCC-related ARGs were identified by Pearson correlation analysis, leading to the establishment of a risk model covering 10 ccRCC-related ARGs. Many indicators were used to assess the accuracy of the risk model. ResultsReceiver operating characteristic (ROC) curve analysis showed that the risk model had high accuracy, indicating that the risk model could predict the prognosis of ccRCC patients. Moreover, the findings revealed significant differences about immune and metabolic features in low- and high-risk groups. The study also found that BAG1 within the risk model was closely related to the prognosis of ccRCC and an independent risk factor. In vitro and in vivo experiments validated for the first time that BAG1 could suppress the proliferation, migration, and invasion of ccRCC. ConclusionThe construction of ARGs risk model, can well predict the prognosis of ccRCC patients, and provide guidance for individual therapy to patients. It was also found that BAG1 has significant prognostic value for ccRCC patients and acts as a tumor suppressor gene in ccRCC. These findings have crucial implications for the prognosis and treatment of ccRCC patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.