Abstract

A stringent DNA probe to profile microRNA (miRNA) expression within a specific cell remains a key challenge in biology. To address this issue, an intracellular ATP-activated Y-DNA probe for accurate imaging of miRNA in living cells was designed. Y-DNA was based on the fabrication of tripartite function modules, which consisted of a folate (FA)-modified targeting module, an ATP aptamer-sealed driver, and a miRNA sensing module. The Y-DNA probe could be specifically activated by ATP after it efficiently internalized into FA-receptor-overexpressed cells based on caveolar-mediated endocytosis, leading to the activation of the miRNA sensing module. The activated Y-DNA probe allowed for the imaging of miRNA in living cells with high sensitivity. The design of the ATP-activated Y-DNA sensor opens the door for bioorthogonal miRNA imaging and promotes the development of various responsive DNA molecular probes with enhanced anti-interference ability for clinical diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call