Abstract

Herein, one kind of neutral chiral zirconium metal-organic framework (Zr-MOF) was reported from the porphyrinic MOF (PMOF) family with a metallolinker (MnIII-porphyrin) as the achiral polytopic linker [free base tetrakis(4-carboxyphenyl)porphyrin] and chiral anions. Achiral Zr-MOF was chiralized through the exchange of primitive anions with new chiral organic anions (postsynthetic exchange). This chiral functional porphyrinic MOF (CPMOF) was characterized by several techniques such as powder X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, 1H NMR, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and Brunauer-Emmett-Teller measurements. In the resulting structure, there are two active metal sites as Lewis acid centers (Zr and Mn) and chiral species as Brønsted acid sites along with their cooperation as nucleophiles. This CPMOF shows considerable bimodal porosity with high surface area and stability. Additionally, its ability was investigated in asymmetric catalyses of prochiral substrates. Interactions between framework chiral species and prochiral substrates have large impacts on the catalytic ability and chirality induction. This chiral catalyst proceeded asymmetric epoxidation and CO2 fixation reactions at lower pressure with high enantioselectivity due to Lewis acids and chiral auxiliary nucleophiles without significant loss of activity up to the sixth step of consecutive cycles of reusability. Observations revealed that chiralization of Zr-MOF could happen by a succinct strategy that can be a convenient method to design chiral MOFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.