Abstract

The paper proposes a constructive method for solving the stationary Kolmogorov-Feller equation with a nonlinear drift coefficient. The corresponding algorithms are constructed and their convergence is justified. The basis of the proposed method is the application of the Fourier transform.

Highlights

  • This paper proposes an approach to constructing solutions of differential equations of fractional order of the Kolmogorov-Feller type

  • A = − lim h (k)q (k) + h (k), → g (k)q (k) + g (k) where h (k), g (k) are determined from Eqs

Read more

Summary

Introduction

This paper proposes an approach to constructing solutions of differential equations of fractional order of the Kolmogorov-Feller type. We consider equations with nonlinear coefficients, namely the case of a quadratic dependence of the drift coefficient on the independent variable. As far as we know, this method of construction is not presented in the literature. The advantage of the method is its effectiveness in numerical implementation

Mathematical model of the problem
Mathematical model analysis
Construction of the solution of the transfer theory problem
Results and conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.