Abstract

The superhydrophobic coating blocks a certain air layer between the solid surface and the liquid, thereby changing the interaction between the surface and water, and has potential applications in enhancing buoyancy and drag reduction. Consequently, a superhydrophobic coating designed to reduce drag (the contact angle was up to 168°) was prepared in this study. The coating was applied to copper mesh by spraying a mixed solution comprising ZIF-8 particles, waterborne polyurethane, and a silane coupling agent, resulting in a significant enhancement of load capacity. The superhydrophobic coating can change the contact mode between the copper mesh and water, leading to a remarkable sevenfold increase in the maximum load capacity when compared with the uncoated sample, primarily due to its' increased buoyancy. In addition, the self-made superhydrophobic model ship exhibited an impressive drag reduction efficiency of up to 36 %, indicating that it has significant drag reduction capability. It's worth noting that once water enters, the superhydrophobic spheres will form a gas cavity, which is critical for the coating's drag reduction capability. The self-cleaning property of this superhydrophobic composite coating is highly promising. Moreover, it can also purify seawater by utilizing ZIF-8's photocatalytic activity to degrade organic contaminant. Therefore, in the context of actual ships and underwater vehicles, this superhydrophobic coating holds potential as a relevant strategy for enhancing buoyancy and reducing drag, thus offering commercial value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.