Abstract

A standard plasmid containing eight targets was developed for quantitative detection of genetically modified (GM) soybeans and cotton. These eight targets were joined in tandem to form the pTLE8 plasmid with a length of 3,680 bp. This plasmid contains part of the endogenous soybean Lec1 gene, the Cauliflower mosaic virus (CaMV) 35S promoter, the Agrobacterium tumefaciens nopaline synthase (NOS) terminator, the PAT gene of the soybean line A2704-12, the event-specific 5'-junction region of Roundup-Ready Soya (RRS, 35SG), the Cry1A(c) gene from Bacillus thuringiensis (Bt), the endogenous cotton Sad1 gene, and a part of RRS EPSPS gene. The PCR efficiencies with pTLE8 as a calibrator ranged from 99.4% to 100.2% for the standard curves of the RRS EPSPS gene and the taxon-specific Lec1 gene (R(2)≥0.996). The limits of detection and quantification were nine and 15 copies, respectively. The standard deviation (SD) and relative standard deviation (RSD) values of repeatability were from 0.09 to 0.52 and from 0.28% to 2.11%, and those for reproducibility were from 0.12 to 1.15 and 0.42% to 3.85%, respectively. The average conversion factor (Cf) for the CRMs RRS quantification was 0.91. The RSD of the mean values for known samples ranged from 3.09% to 18.53%, and the biases were from 0.5% to 40%. These results show that our method using the pTLE8 plasmid as a reference material (RM) is reliable and feasible in the identification of GM soybeans, thus paving the way for the establishment of identification management systems for various products containing GMO components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call