Abstract

In radiation beam-profile measurements, an accurate positioning of the detector with high position resolution is essential. For this purpose, we built a scanning device capable of moving a detector in three dimensions (3D) using mainly parts from a commercial 3D-printer. The accuracy and repeatability of movement was tested with caliper, laser displacement sensor and repeated 60Co beam-profile measurements in a water phantom. The results from the caliper and the sensor showed position accuracy for the scanner to be better than $\pm$150μm. The standard deviation of the error in position from laser sensor measurements was approximately 30μm, and the beam profile scans showed a maximum deviation from the mean position of 50μm. The effect of volume averaging correction factors on 60Co beam-profile was investigated with two different sized ionization chambers. The differences in the profiles were reduced significantly after applying the correction factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.