Abstract

BackgroundHepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and the third leading cause of cancer-related death. MicroRNAs and transcription factors (TFs) cooperate to regulate the same target gene, thus affecting the progression of HCC.MethodsDifferentially expressed miRNAs and mRNAs were screened. Functional enrichment analysis of these HCC-related mRNAs was performed, and a protein-protein interaction network was constructed. TFs that regulate these miRNAs and hub genes were also screened.ResultsTen differentially upregulated miRNAs and 5 differentially downregulated miRNAs were screened. Additionally, 183 downregulated mRNAs and 303 upregulated mRNAs that are potentially bound to these differentially expressed miRNAs were identified. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that the differentially expressed mRNAs were significantly enriched in pathways in cancer, the Wnt signaling pathway, and the Rap1 signaling pathway. Then, 220 TFs were identified for 5 candidate genes of the downregulated mRNAs, and 258 TFs were identified for 9 candidate genes of the upregulated mRNAs. Finally, the 9 upregulated hub genes were related to higher overall survival (OS) in the low-expression group, and 4/5 downregulated hub genes were related to higher OS in the high-expression group.ConclusionsThis study constructed a potential regulatory network between candidate molecules and that need to be further verified. These regulatory relationships are expected to clarify the new molecular mechanisms of the occurrence and development of HCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call